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Abstract. Although phenomenon of thermo-acoustic wave has been known for many years in some familiar experiences such 

as “singing flame” from Bunsen burner, recent trends of utilizing it for the industrial applications urge the understandings of basic 

details of the phenomenon itself. Here we consider, in this connection, the problem of acoustic wave generation from a particular 

heat source of solid wall whose temperature changes with time and the phenomenon of temperature change by standing wave 

oscillating in closed tube. For these we set a hollow tube whose temperature at its one end wall changes with time, and compute 

flow field inside using the molecular kinetic model, which is found to be more convenient for the boundary value fitting than the 

ordinary acoustic theory system to this problem. In practice, we use the Boltzmann equation with the BGK approximation, and 

compute two cases above in monotonic and sinusoidal temperature changes with time. Results of both cases show propagating 

density wave from the wall almost in acoustic velocity to the first case and the temperature decreases in average to the second 

case. 
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INTRODUCTION 

The phenomenon of thermal-acoustics has been known for years [1] in some familiar everyday experiences, 

representatively as “singing flame” from Bunsen burner or thunderclap. In fact, sound wave propagation itself is 

given by the adiabatic change in air. Beyond these mere observations of the phenomenon, there have been various 

efforts of utilizing the effects for industrial applications. For example,  the one for the refrigeration  utilizing the 

effect of cooling material by acoustic wave [2], or Sterling engine by thermo-acoustic self-excited oscillation [3]. 
These trends are naturally stimulating the study for the basic details of the phenomenon itself. Here we consider the 

problem of thermal acoustic wave generation from a solid wall surface whose temperature changes with time and the 

problem of acoustic wave cooling of materials being effective for refrigeration as quoted in above. We approach 

these theoretically by the use of the molecular kinetic theory model [4] Notice that  the traditional gas dynamics 

approach [5] based on the  wave equation having a source term of  entropy change with time inside gas flow is found 

to be not convenient to the present case of source at wall in boundary value fitting., while it is naturally incorporated 

in the kinetic model approach for the surface condition such as diffuse reflection at solid surface.  
 

In practice, we compute one-dimensional and two flow fields inside a hollow tube in using the Boltzmann-BGK 

equation in a reduced form [5] with the diffuse reflection at walls for both cases of changing wall temperature with 

time and standing wave oscillating inside the tube. Results show propagating density wave in acoustic velocity to the 

first case and some decrease in the temperature in its mean value to the second case. 

THE BOLTZMANN-BGK EQUATION 

We have the Boltzmann-BGK equation for the molecular velocity distribution function   ( , )f tc, xc, xc, xc, x



to the molecular velocity ( , , )x y zc c c=c , the spatial coordinates x=(x, y, z) and the time t as,
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( , )x tν ν= is the collision frequency and
 0 0 ( , )f f t= c, xc, xc, xc, x is given by the local Maxwellian as
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The collision frequency ν  can be expressed as      

0 / ,nk N Kν =  

where 0 8 / 5 ,k π= nK  is the Knudsen number given by / ,l L with l  the mean free path and  L  the 

representative length. 

 

For the convenience of numerical computation of 2D or 1D flow, we use the reduced distribution functions ,g h  

and their local Maxwellians 0 0,g h , which are given by  
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 the integral form being affected along the characteristics to the small time step t∆  
 

, 0 0( , )( , ) ( , )( , ) [( , ) ( , )]( , ) (2)g h t t t g h t t g h g h t∆ + ∆ = + ∆ −c, x+ c c, x c, xc, x+ c c, x c, xc, x+ c c, x c, xc, x+ c c, x c, x .                                      

in the non-dimensional form based on the reference density 0N , temperature 0T or  the most  probable velocity 

0 02RTξ =   and  length L.  

BOUNDARY CONDITION AT WALL SURFACE 

We use the diffuse reflection condition at the wall surface and set the function f at the wall to the local Maxwellian 

Wf  to which its temperature is wT , its velocity is zero and its density wN  is given by the condition of zero mass 

flux across the surface. It is given more explicitly by the condition : 

0 0 0
n nc n W c nc f d c f d> <+ =∫ ∫c c                                                       (3) 

at the boundary surface、where nc is the normal component of the molecular velocity at the wall surface and Wf  is 

given by the above Maxwellian as, 
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and the boundary condition: 

 

 0 0 0 0, (1/ 2) ; ,w wg g h T g g g h T g= = = =                                     (4) 

 

at the boundary wall surface respectively for 2D and  1D cases. 

                                             

  The condition of the diffuse reflection models the interaction of gas molecules with the molecular structure of the 

solid, in contrast to the macroscopic gas dynamic boundary condition which is not related to the internal structure of 

the wall material and not suitable to incorporate the interaction process.     
 

COMPUTATION OF THERMAL ACOUSTIC WAVE IN TUBE 

We consider thermal acoustic  wave from a particular heat source of solid wall surface whose temperature changes 

with time, its propagation and its effect on boundary wall..We set a hollow tube as shown in Fig.1, and compute 

flow field inside using the molecular kinetic equation of eq. (2) subject to the boundary condition of eq.(4), In  

practice, we compute the following two cases: 

 

(i)  Wave generation from a wall of temporal temperature change. 

(ii) Temperature change by standing wave in closed tube. 

 

 

.                                 

 
                    FIGURE 1.  Configuration of computational domain 

 

(i) Computation of  generation and propagation of wave from solid wall with changing temperature 

T with time t , in one and two-dimensional(1D and 2D) cases. 
We set 

0 ( ), ( ) or sinT T f t f t t tα ω= + =       

on  the wall B surface  at  1.0 ( )x L=   

here 0T  is the initial temperature of the gas in tube and α, ω are constants.. 



Fig.2(a),(b) show examples of the results of one-dimensional computation of the density distribution respectively for 

the first and the second cases of ( )f t , both show propagating density wave velocity c%  in almost acoustic velocity 

as 0 00.7 (a) and 0.75 ( )c c bξ ξ≈ ≈% % .  
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(a)                                                                                              (b) 

FIGURE2.  Propagating density wave from end wall of changing temperature with time: 

 (a) ( )f t tα=   (b) ( ) sin ; 0.0015, 0.1, 10nf t t Kω α ω π= = = =  

 

Next we performed two-dimensional (2D) computation to the first case of  ( )f t tα=  to see the effect of boundary 

on  the propagation characteristics of the wave. We used the diffuse reflection condition to all the surfaces of A,B, 

upper and lower walls. Results are shown in Fig.3 for an example of the wave propagation for 0.1α =      

 

 
 

 

 

 

 

 

 

 

 

 

 

 

                                          

                                                                                

FIGURE3.  Two-dimensional computation of the propagation of 2D density wave from end wall B of 

changing temperature with time as ( )f t tα α= 、 =0.1  

 

 

(ii) Effect of stationary wave on the temperature. 

We produce 1D standing wave in tube by oscillating the temperature of surface wall B at x=1 as sin tω  above and 

examine the temperature of gas at the  at x=0 and x=0.5 . Fig.4 shows the changing feature of the temperature BT  at 

0x = (a) and 0.5x = (b). We can notice a tendency of the temperature decreasing with time in its average as been 

shown in famous paper of reference (2). 
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(a)  at 0.0x =                              (b) at 0.5x =  

FIGURE４４４４.  Temperature (a) ( )BT t  at x=0  (b) ( )BT t  at x=0.5 

  

SUMMARY 

Computed thermal acoustic waves in hollow tube utilizing the molecular kinetic model of  the Boltzmann-
 

 

BGK equation with the diffuse reflection condition at a wall.. 

 

Observed generation of acoustic wave from solid wall which changing temperature with time, iin 1D and 2D 
computations.. 

 

Noticed a tendency of temperature decrease with time in average in 1D computation of stationary wave by  

oscillating the wall temperature of the surface wall.
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